Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Apr 2024 (v1), last revised 28 Sep 2024 (this version, v3)]
Title:AnyPattern: Towards In-context Image Copy Detection
View PDF HTML (experimental)Abstract:This paper explores in-context learning for image copy detection (ICD), i.e., prompting an ICD model to identify replicated images with new tampering patterns without the need for additional training. The prompts (or the contexts) are from a small set of image-replica pairs that reflect the new patterns and are used at inference time. Such in-context ICD has good realistic value, because it requires no fine-tuning and thus facilitates fast reaction against the emergence of unseen patterns. To accommodate the "seen $\rightarrow$ unseen" generalization scenario, we construct the first large-scale pattern dataset named AnyPattern, which has the largest number of tamper patterns ($90$ for training and $10$ for testing) among all the existing ones. We benchmark AnyPattern with popular ICD methods and reveal that existing methods barely generalize to novel patterns. We further propose a simple in-context ICD method named ImageStacker. ImageStacker learns to select the most representative image-replica pairs and employs them as the pattern prompts in a stacking manner (rather than the popular concatenation manner). Experimental results show (1) training with our large-scale dataset substantially benefits pattern generalization ($+26.66 \%$ $\mu AP$), (2) the proposed ImageStacker facilitates effective in-context ICD (another round of $+16.75 \%$ $\mu AP$), and (3) AnyPattern enables in-context ICD, i.e., without such a large-scale dataset, in-context learning does not emerge even with our ImageStacker. Beyond the ICD task, we also demonstrate how AnyPattern can benefit artists, i.e., the pattern retrieval method trained on AnyPattern can be generalized to identify style mimicry by text-to-image models. The project is publicly available at this https URL.
Submission history
From: Wenhao Wang [view email][v1] Sun, 21 Apr 2024 22:33:57 UTC (35,542 KB)
[v2] Sun, 28 Apr 2024 10:15:37 UTC (48,488 KB)
[v3] Sat, 28 Sep 2024 13:03:32 UTC (46,812 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.