Mathematics > Numerical Analysis
[Submitted on 16 Apr 2024]
Title:A novel interpretation of Nesterov's acceleration via variable step-size linear multistep methods
View PDF HTML (experimental)Abstract:Nesterov's acceleration in continuous optimization can be understood in a novel way when Nesterov's accelerated gradient (NAG) method is considered as a linear multistep (LM) method for gradient flow. Although the NAG method for strongly convex functions (NAG-sc) has been fully discussed, the NAG method for $L$-smooth convex functions (NAG-c) has not. To fill this gap, we show that the existing NAG-c method can be interpreted as a variable step size LM (VLM) for the gradient flow. Surprisingly, the VLM allows linearly increasing step sizes, which explains the acceleration in the convex case. Here, we introduce a novel technique for analyzing the absolute stability of VLMs. Subsequently, we prove that NAG-c is optimal in a certain natural class of VLMs. Finally, we construct a new broader class of VLMs by optimizing the parameters in the VLM for ill-conditioned problems. According to numerical experiments, the proposed method outperforms the NAG-c method in ill-conditioned cases. These results imply that the numerical analysis perspective of the NAG is a promising working environment, and considering a broader class of VLMs could further reveal novel methods.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.