Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Apr 2024 (v1), last revised 20 Aug 2024 (this version, v2)]
Title:Conditional Prototype Rectification Prompt Learning
View PDF HTML (experimental)Abstract:Pre-trained large-scale vision-language models (VLMs) have acquired profound understanding of general visual concepts. Recent advancements in efficient transfer learning (ETL) have shown remarkable success in fine-tuning VLMs within the scenario of limited data, introducing only a few parameters to harness task-specific insights from VLMs. Despite significant progress, current leading ETL methods tend to overfit the narrow distributions of base classes seen during training and encounter two primary challenges: (i) only utilizing uni-modal information to modeling task-specific knowledge; and (ii) using costly and time-consuming methods to supplement knowledge. To address these issues, we propose a Conditional Prototype Rectification Prompt Learning (CPR) method to correct the bias of base examples and augment limited data in an effective way. Specifically, we alleviate overfitting on base classes from two aspects. First, each input image acquires knowledge from both textual and visual prototypes, and then generates sample-conditional text tokens. Second, we extract utilizable knowledge from unlabeled data to further refine the prototypes. These two strategies mitigate biases stemming from base classes, yielding a more effective classifier. Extensive experiments on 11 benchmark datasets show that our CPR achieves state-of-the-art performance on both few-shot classification and base-to-new generalization tasks. Our code is avaliable at \url{this https URL}.
Submission history
From: Haoxing Chen [view email][v1] Mon, 15 Apr 2024 15:43:52 UTC (2,442 KB)
[v2] Tue, 20 Aug 2024 07:52:08 UTC (3,121 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.