Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Apr 2024]
Title:VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning
View PDF HTML (experimental)Abstract:Recognising emotions in context involves identifying the apparent emotions of an individual, taking into account contextual cues from the surrounding scene. Previous approaches to this task have involved the design of explicit scene-encoding architectures or the incorporation of external scene-related information, such as captions. However, these methods often utilise limited contextual information or rely on intricate training pipelines. In this work, we leverage the groundbreaking capabilities of Vision-and-Large-Language Models (VLLMs) to enhance in-context emotion classification without introducing complexity to the training process in a two-stage approach. In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion relative to the visual context. In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture that fuses text and visual features before the final classification task. Our experimental results show that the text and image features have complementary information, and our fused architecture significantly outperforms the individual modalities without any complex training methods. We evaluate our approach on three different datasets, namely, EMOTIC, CAER-S, and BoLD, and achieve state-of-the-art or comparable accuracy across all datasets and metrics compared to much more complex approaches. The code will be made publicly available on github: this https URL
Submission history
From: Niki Maria Foteinopoulou [view email][v1] Wed, 10 Apr 2024 15:09:15 UTC (19,764 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.