Electrical Engineering and Systems Science > Systems and Control
[Submitted on 11 Apr 2024]
Title:An advanced 1D physics-based model for PEM hydrogen fuel cells with enhanced overvoltage prediction
View PDF HTML (experimental)Abstract:A one-dimensional, dynamic, two-phase, isothermal and finite-difference model of proton exchange membrane fuel cell (PEMFC) systems has been developed. It is distinct from most existing models which are either fast but imprecise, such as lumped-parameter models, or detailed but computationally intensive, such as computational fluid dynamics models. This model, partially validated using experimental polarisation curves, provides a comprehensive description of cell internal states while maintaining a low computational burden. Additionally, a new physical quantity, named the limit liquid water saturation coefficient ($s_{lim}$), is introduced in the overvoltage calculation equation. This quantity replaces the limit current density coefficient ($i_{lim}$) and establishes a connection between the voltage drop at high current densities, the amount of liquid water present in the catalyst layers of the cell, and the operating conditions. At high current densities, a significant amount of liquid water is generated, which limits the accessibility of reactants to certain triple point zones within the catalyst layers by covering them. This, in turn, increases overpotential. It has also been observed that $s_{lim}$ is influenced, at minimum, by the gas pressure imposed by the operator.
Submission history
From: Raphael Gass [view email] [via CCSD proxy][v1] Thu, 11 Apr 2024 06:55:48 UTC (540 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.