Electrical Engineering and Systems Science > Systems and Control
[Submitted on 10 Apr 2024]
Title:Data-driven parallel Koopman subsystem modeling and distributed moving horizon state estimation for large-scale nonlinear processes
View PDF HTML (experimental)Abstract:In this work, we consider a state estimation problem for large-scale nonlinear processes in the absence of first-principles process models. By exploiting process operation data, both process modeling and state estimation design are addressed within a distributed framework. By leveraging the Koopman operator concept, a parallel subsystem modeling approach is proposed to establish interactive linear subsystem process models in higher-dimensional subspaces, each of which correlates with the original nonlinear subspace of the corresponding process subsystem via a nonlinear mapping. The data-driven linear subsystem models can be used to collaboratively characterize and predict the dynamical behaviors of the entire nonlinear process. Based on the established subsystem models, local state estimators that can explicitly handle process operation constraints are designed using moving horizon estimation. The local estimators are integrated via information exchange to form a distributed estimation scheme, which provides estimates of the unmeasured/unmeasurable state variables of the original nonlinear process in a linear manner. The proposed framework is applied to a chemical process and an agro-hydrological process to illustrate its effectiveness and applicability. Good open-loop predictability of the linear subsystem models is confirmed, and accurate estimates of the process states are obtained without requiring a first-principles process model.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.