Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 5 Apr 2024]
Title:Real-GDSR: Real-World Guided DSM Super-Resolution via Edge-Enhancing Residual Network
View PDF HTML (experimental)Abstract:A low-resolution digital surface model (DSM) features distinctive attributes impacted by noise, sensor limitations and data acquisition conditions, which failed to be replicated using simple interpolation methods like bicubic. This causes super-resolution models trained on synthetic data does not perform effectively on real ones. Training a model on real low and high resolution DSMs pairs is also a challenge because of the lack of information. On the other hand, the existence of other imaging modalities of the same scene can be used to enrich the information needed for large-scale super-resolution. In this work, we introduce a novel methodology to address the intricacies of real-world DSM super-resolution, named REAL-GDSR, breaking down this ill-posed problem into two steps. The first step involves the utilization of a residual local refinement network. This strategic approach departs from conventional methods that trained to directly predict height values instead of the differences (residuals) and utilize large receptive fields in their networks. The second step introduces a diffusion-based technique that enhances the results on a global scale, with a primary focus on smoothing and edge preservation. Our experiments underscore the effectiveness of the proposed method. We conduct a comprehensive evaluation, comparing it to recent state-of-the-art techniques in the domain of real-world DSM super-resolution (SR). Our approach consistently outperforms these existing methods, as evidenced through qualitative and quantitative assessments.
Submission history
From: Daniel Panangian [view email][v1] Fri, 5 Apr 2024 07:24:10 UTC (33,040 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.