Mathematics > Combinatorics
[Submitted on 3 Apr 2024]
Title:Degree Sequence Optimization and Extremal Degree Enumerators
View PDF HTML (experimental)Abstract:The degree sequence optimization problem is to find a subgraph of a given graph which maximizes the sum of given functions evaluated at the subgraph degrees. Here we study this problem by replacing degree sequences, via suitable nonlinear transformations, by suitable degree enumerators, and we introduce suitable degree enumerator polytopes.
We characterize their vertices, that is, the extremal degree enumerators, for complete graphs and some complete bipartite graphs, and use these characterizations to obtain simpler and faster algorithms for optimization over degree sequences for such graphs.
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.