Electrical Engineering and Systems Science > Systems and Control
[Submitted on 2 Apr 2024]
Title:Integrating SystemC-AMS Power Modeling with a RISC-V ISS for Virtual Prototyping of Battery-operated Embedded Devices
View PDF HTML (experimental)Abstract:RISC-V cores have gained a lot of popularity over the last few years. However, being quite a recent and novel technology, there is still a gap in the availability of comprehensive simulation frameworks for RISC-V that cover both the functional and extra-functional aspects. This gap hinders progress in the field, as fast yet accurate system-level simulation is crucial for Design Space Exploration (DSE).
This work presents an open-source framework designed to tackle this challenge, integrating functional RISC-V simulation (achieved with GVSoC) with SystemC-AMS (used to model extra-functional aspects, in detail power storage and distribution). The combination of GVSoC and SystemC-AMS in a single simulation framework allows to perform a DSE that is dependent on the mutual impact between functional and extra-functional aspects. In our experiments, we validate the framework's effectiveness by creating a virtual prototype of a compact, battery-powered embedded system.
Submission history
From: Mohamed Amine Hamdi [view email][v1] Tue, 2 Apr 2024 11:38:18 UTC (2,702 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.