Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Mar 2024 (v1), last revised 8 Sep 2024 (this version, v2)]
Title:TOGS: Gaussian Splatting with Temporal Opacity Offset for Real-Time 4D DSA Rendering
View PDF HTML (experimental)Abstract:Four-dimensional Digital Subtraction Angiography (4D DSA) is a medical imaging technique that provides a series of 2D images captured at different stages and angles during the process of contrast agent filling blood vessels. It plays a significant role in the diagnosis of cerebrovascular diseases. Improving the rendering quality and speed under sparse sampling is important for observing the status and location of lesions. The current methods exhibit inadequate rendering quality in sparse views and suffer from slow rendering speed. To overcome these limitations, we propose TOGS, a Gaussian splatting method with opacity offset over time, which can effectively improve the rendering quality and speed of 4D DSA. We introduce an opacity offset table for each Gaussian to model the opacity offsets of the Gaussian, using these opacity-varying Gaussians to model the temporal variations in the radiance of the contrast agent. By interpolating the opacity offset table, the opacity variation of the Gaussian at different time points can be determined. This enables us to render the 2D DSA image at that specific moment. Additionally, we introduced a Smooth loss term in the loss function to mitigate overfitting issues that may arise in the model when dealing with sparse view scenarios. During the training phase, we randomly prune Gaussians, thereby reducing the storage overhead of the model. The experimental results demonstrate that compared to previous methods, this model achieves state-of-the-art render quality under the same number of training views. Additionally, it enables real-time rendering while maintaining low storage overhead. The code is available at this https URL.
Submission history
From: Shuai Zhang [view email][v1] Thu, 28 Mar 2024 17:08:58 UTC (1,472 KB)
[v2] Sun, 8 Sep 2024 06:33:14 UTC (2,372 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.