Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Mar 2024 (v1), last revised 25 May 2024 (this version, v2)]
Title:Elite360D: Towards Efficient 360 Depth Estimation via Semantic- and Distance-Aware Bi-Projection Fusion
View PDF HTML (experimental)Abstract:360 depth estimation has recently received great attention for 3D reconstruction owing to its omnidirectional field of view (FoV). Recent approaches are predominantly focused on cross-projection fusion with geometry-based re-projection: they fuse 360 images with equirectangular projection (ERP) and another projection type, e.g., cubemap projection to estimate depth with the ERP format. However, these methods suffer from 1) limited local receptive fields, making it hardly possible to capture large FoV scenes, and 2) prohibitive computational cost, caused by the complex cross-projection fusion module design. In this paper, we propose Elite360D, a novel framework that inputs the ERP image and icosahedron projection (ICOSAP) point set, which is undistorted and spatially continuous. Elite360D is superior in its capacity in learning a representation from a local-with-global perspective. With a flexible ERP image encoder, it includes an ICOSAP point encoder, and a Bi-projection Bi-attention Fusion (B2F) module (totally ~1M parameters). Specifically, the ERP image encoder can take various perspective image-trained backbones (e.g., ResNet, Transformer) to extract local features. The point encoder extracts the global features from the ICOSAP. Then, the B2F module captures the semantic- and distance-aware dependencies between each pixel of the ERP feature and the entire ICOSAP feature set. Without specific backbone design and obvious computational cost increase, Elite360D outperforms the prior arts on several benchmark datasets.
Submission history
From: Hao Ai [view email][v1] Mon, 25 Mar 2024 02:46:57 UTC (13,632 KB)
[v2] Sat, 25 May 2024 05:05:55 UTC (9,904 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.