Computer Science > Robotics
[Submitted on 20 Mar 2024 (v1), last revised 13 Nov 2024 (this version, v2)]
Title:Embedding Pose Graph, Enabling 3D Foundation Model Capabilities with a Compact Representation
View PDF HTML (experimental)Abstract:This paper presents the Embedding Pose Graph (EPG), an innovative method that combines the strengths of foundation models with a simple 3D representation suitable for robotics applications. Addressing the need for efficient spatial understanding in robotics, EPG provides a compact yet powerful approach by attaching foundation model features to the nodes of a pose graph. Unlike traditional methods that rely on bulky data formats like voxel grids or point clouds, EPG is lightweight and scalable. It facilitates a range of robotic tasks, including open-vocabulary querying, disambiguation, image-based querying, language-directed navigation, and re-localization in 3D environments. We showcase the effectiveness of EPG in handling these tasks, demonstrating its capacity to improve how robots interact with and navigate through complex spaces. Through both qualitative and quantitative assessments, we illustrate EPG's strong performance and its ability to outperform existing methods in re-localization. Our work introduces a crucial step forward in enabling robots to efficiently understand and operate within large-scale 3D spaces.
Submission history
From: Hugues Thomas [view email][v1] Wed, 20 Mar 2024 17:41:21 UTC (5,516 KB)
[v2] Wed, 13 Nov 2024 23:46:42 UTC (5,516 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.