Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Mar 2024]
Title:Confusing Pair Correction Based on Category Prototype for Domain Adaptation under Noisy Environments
View PDF HTML (experimental)Abstract:In this paper, we address unsupervised domain adaptation under noisy environments, which is more challenging and practical than traditional domain adaptation. In this scenario, the model is prone to overfitting noisy labels, resulting in a more pronounced domain shift and a notable decline in the overall model performance. Previous methods employed prototype methods for domain adaptation on robust feature spaces. However, these approaches struggle to effectively classify classes with similar features under noisy environments. To address this issue, we propose a new method to detect and correct confusing class pair. We first divide classes into easy and hard classes based on the small loss criterion. We then leverage the top-2 predictions for each sample after aligning the source and target domain to find the confusing pair in the hard classes. We apply label correction to the noisy samples within the confusing pair. With the proposed label correction method, we can train our model with more accurate labels. Extensive experiments confirm the effectiveness of our method and demonstrate its favorable performance compared with existing state-of-the-art methods. Our codes are publicly available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.