Statistics > Machine Learning
[Submitted on 15 Mar 2024]
Title:Conformal Predictions for Probabilistically Robust Scalable Machine Learning Classification
View PDF HTML (experimental)Abstract:Conformal predictions make it possible to define reliable and robust learning algorithms. But they are essentially a method for evaluating whether an algorithm is good enough to be used in practice. To define a reliable learning framework for classification from the very beginning of its design, the concept of scalable classifier was introduced to generalize the concept of classical classifier by linking it to statistical order theory and probabilistic learning theory. In this paper, we analyze the similarities between scalable classifiers and conformal predictions by introducing a new definition of a score function and defining a special set of input variables, the conformal safety set, which can identify patterns in the input space that satisfy the error coverage guarantee, i.e., that the probability of observing the wrong (possibly unsafe) label for points belonging to this set is bounded by a predefined $\varepsilon$ error level. We demonstrate the practical implications of this framework through an application in cybersecurity for identifying DNS tunneling attacks. Our work contributes to the development of probabilistically robust and reliable machine learning models.
Submission history
From: Alberto Carlevaro Dr. [view email][v1] Fri, 15 Mar 2024 14:59:24 UTC (3,227 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.