Computer Science > Cryptography and Security
[Submitted on 15 Mar 2024]
Title:Federated Learning with Anomaly Detection via Gradient and Reconstruction Analysis
View PDF HTML (experimental)Abstract:In the evolving landscape of Federated Learning (FL), the challenge of ensuring data integrity against poisoning attacks is paramount, particularly for applications demanding stringent privacy preservation. Traditional anomaly detection strategies often struggle to adapt to the distributed nature of FL, leaving a gap our research aims to bridge. We introduce a novel framework that synergizes gradient-based analysis with autoencoder-driven data reconstruction to detect and mitigate poisoned data with unprecedented precision. Our approach uniquely combines detecting anomalous gradient patterns with identifying reconstruction errors, significantly enhancing FL model security. Validated through extensive experiments on MNIST and CIFAR-10 datasets, our method outperforms existing solutions by 15\% in anomaly detection accuracy while maintaining a minimal false positive rate. This robust performance, consistent across varied data types and network sizes, underscores our framework's potential in securing FL deployments in critical domains such as healthcare and finance. By setting new benchmarks for anomaly detection within FL, our work paves the way for future advancements in distributed learning security.
Submission history
From: Zahir Alsulaimawi [view email][v1] Fri, 15 Mar 2024 03:54:45 UTC (2,320 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.