Computer Science > Machine Learning
[Submitted on 15 Mar 2024]
Title:Variance-Dependent Regret Bounds for Non-stationary Linear Bandits
View PDFAbstract:We investigate the non-stationary stochastic linear bandit problem where the reward distribution evolves each round. Existing algorithms characterize the non-stationarity by the total variation budget $B_K$, which is the summation of the change of the consecutive feature vectors of the linear bandits over $K$ rounds. However, such a quantity only measures the non-stationarity with respect to the expectation of the reward distribution, which makes existing algorithms sub-optimal under the general non-stationary distribution setting. In this work, we propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds. Specifically, we introduce two novel algorithms: Restarted Weighted$\text{OFUL}^+$ and Restarted $\text{SAVE}^+$. These algorithms address cases where the variance information of the rewards is known and unknown, respectively. Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary stochastic linear bandits under different settings. Experimental evaluations further validate the superior performance of our proposed algorithms over existing works.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.