Computer Science > Machine Learning
[Submitted on 13 Mar 2024 (v1), last revised 31 May 2024 (this version, v3)]
Title:Fast Inference of Removal-Based Node Influence
View PDF HTML (experimental)Abstract:Graph neural networks (GNNs) are widely utilized to capture the information spreading patterns in graphs. While remarkable performance has been achieved, there is a new trending topic of evaluating node influence. We propose a new method of evaluating node influence, which measures the prediction change of a trained GNN model caused by removing a node. A real-world application is, "In the task of predicting Twitter accounts' polarity, had a particular account been removed, how would others' polarity change?". We use the GNN as a surrogate model whose prediction could simulate the change of nodes or edges caused by node removal. Our target is to obtain the influence score for every node, and a straightforward way is to alternately remove every node and apply the trained GNN on the modified graph to generate new predictions. It is reliable but time-consuming, so we need an efficient method. The related lines of work, such as graph adversarial attack and counterfactual explanation, cannot directly satisfy our needs, since their problem settings are different. We propose an efficient, intuitive, and effective method, NOde-Removal-based fAst GNN inference (NORA), which uses the gradient information to approximate the node-removal influence. It only costs one forward propagation and one backpropagation to approximate the influence score for all nodes. Extensive experiments on six datasets and six GNN models verify the effectiveness of NORA. Our code is available at this https URL.
Submission history
From: Weikai Li [view email][v1] Wed, 13 Mar 2024 08:37:31 UTC (1,598 KB)
[v2] Sat, 16 Mar 2024 22:06:04 UTC (1,641 KB)
[v3] Fri, 31 May 2024 22:36:34 UTC (1,641 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.