Computer Science > Machine Learning
[Submitted on 13 Mar 2024]
Title:Learning-driven Physically-aware Large-scale Circuit Gate Sizing
View PDF HTML (experimental)Abstract:Gate sizing plays an important role in timing optimization after physical design. Existing machine learning-based gate sizing works cannot optimize timing on multiple timing paths simultaneously and neglect the physical constraint on layouts. They cause sub-optimal sizing solutions and low-efficiency issues when compared with commercial gate sizing tools. In this work, we propose a learning-driven physically-aware gate sizing framework to optimize timing performance on large-scale circuits efficiently. In our gradient descent optimization-based work, for obtaining accurate gradients, a multi-modal gate sizing-aware timing model is achieved via learning timing information on multiple timing paths and physical information on multiple-scaled layouts jointly. Then, gradient generation based on the sizing-oriented estimator and adaptive back-propagation are developed to update gate sizes. Our results demonstrate that our work achieves higher timing performance improvements in a faster way compared with the commercial gate sizing tool.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.