Electrical Engineering and Systems Science > Systems and Control
[Submitted on 13 Mar 2024]
Title:Unleashing the True Power of Age-of-Information: Service Aggregation in Connected and Autonomous Vehicles
View PDF HTML (experimental)Abstract:Connected and autonomous vehicles (CAVs) rely heavily upon time-sensitive information update services to ensure the safety of people and assets, and satisfactory entertainment applications. Therefore, the freshness of information is a crucial performance metric for CAV services. However, information from roadside sensors and nearby vehicles can get delayed in transmission due to the high mobility of vehicles. Our research shows that a CAV's relative distance and speed play an essential role in determining the Age-of-Information (AoI). With an increase in AoI, incremental service aggregation issues are observed with out-of-sequence information updates, which hampers the performance of low-latency applications in CAVs. In this paper, we propose a novel AoI-based service aggregation method for CAVs, which can process the information updates according to their update cycles. First, the AoI for sensors and vehicles is modeled, and a predictive AoI system is designed. Then, to reduce the overall service aggregation time and computational load, intervals are used for periodic AoI prediction, and information sources are clustered based on the AoI value. Finally, the system aggregates services for CAV applications using the predicted AoI. We evaluate the system performance based on data sequencing success rate (DSSR) and overall system latency. Lastly, we compare the performance of our proposed system with three other state-of-the-art methods. The evaluation and comparison results show that our proposed predictive AoI-based service aggregation system maintains satisfactory latency and DSSR for CAV applications and outperforms other existing methods.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.