Computer Science > Data Structures and Algorithms
[Submitted on 12 Mar 2024 (v1), last revised 2 Jul 2024 (this version, v2)]
Title:Noisy Computing of the Threshold Function
View PDF HTML (experimental)Abstract:Let $\mathsf{TH}_k$ denote the $k$-out-of-$n$ threshold function: given $n$ input Boolean variables, the output is $1$ if and only if at least $k$ of the inputs are $1$. We consider the problem of computing the $\mathsf{TH}_k$ function using noisy readings of the Boolean variables, where each reading is incorrect with some fixed and known probability $p \in (0,1/2)$. As our main result, we show that it is sufficient to use $(1+o(1)) \frac{n\log \frac{m}{\delta}}{D_{\mathsf{KL}}(p \| 1-p)}$ queries in expectation to compute the $\mathsf{TH}_k$ function with a vanishing error probability $\delta = o(1)$, where $m\triangleq \min\{k,n-k\}$ and $D_{\mathsf{KL}}(p \| 1-p)$ denotes the Kullback-Leibler divergence between $\mathsf{Bern}(p)$ and $\mathsf{Bern}(1-p)$ distributions. Conversely, we show that any algorithm achieving an error probability of $\delta = o(1)$ necessitates at least $(1-o(1))\frac{(n-m)\log\frac{m}{\delta}}{D_{\mathsf{KL}}(p \| 1-p)}$ queries in expectation. The upper and lower bounds are tight when $m=o(n)$, and are within a multiplicative factor of $\frac{n}{n-m}$ when $m=\Theta(n)$. In particular, when $k=n/2$, the $\mathsf{TH}_k$ function corresponds to the $\mathsf{MAJORITY}$ function, in which case the upper and lower bounds are tight up to a multiplicative factor of two. Compared to previous work, our result tightens the dependence on $p$ in both the upper and lower bounds.
Submission history
From: Ziao Wang [view email][v1] Tue, 12 Mar 2024 00:35:05 UTC (45 KB)
[v2] Tue, 2 Jul 2024 04:24:33 UTC (150 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.