Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 27 Feb 2024]
Title:Smart HPA: A Resource-Efficient Horizontal Pod Auto-scaler for Microservice Architectures
View PDF HTML (experimental)Abstract:Microservice architectures have gained prominence in both academia and industry, offering enhanced agility, reusability, and scalability. To simplify scaling operations in microservice architectures, container orchestration platforms such as Kubernetes feature Horizontal Pod Auto-scalers (HPAs) designed to adjust the resources of microservices to accommodate fluctuating workloads. However, existing HPAs are not suitable for resource-constrained environments, as they make scaling decisions based on the individual resource capacities of microservices, leading to service unavailability and performance degradation. Furthermore, HPA architectures exhibit several issues, including inefficient data processing and a lack of coordinated scaling operations. To address these concerns, we propose Smart HPA, a flexible resource-efficient horizontal pod auto-scaler. It features a hierarchical architecture that integrates both centralized and decentralized architectural styles to leverage their respective strengths while addressing their limitations. We introduce resource-efficient heuristics that empower Smart HPA to exchange resources among microservices, facilitating effective auto-scaling of microservices in resource-constrained environments. Our experimental results show that Smart HPA outperforms the Kubernetes baseline HPA by reducing resource overutilization, overprovisioning, and underprovisioning while increasing resource allocation to microservice applications.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.