Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Mar 2024 (v1), last revised 23 Jul 2024 (this version, v2)]
Title:BEV$^2$PR: BEV-Enhanced Visual Place Recognition with Structural Cues
View PDF HTML (experimental)Abstract:In this paper, we propose a new image-based visual place recognition (VPR) framework by exploiting the structural cues in bird's-eye view (BEV) from a single monocular camera. The motivation arises from two key observations about place recognition methods based on both appearance and structure: 1) For the methods relying on LiDAR sensors, the integration of LiDAR in robotic systems has led to increased expenses, while the alignment of data between different sensors is also a major challenge. 2) Other image-/camera-based methods, involving integrating RGB images and their derived variants (eg, pseudo depth images, pseudo 3D point clouds), exhibit several limitations, such as the failure to effectively exploit the explicit spatial relationships between different objects. To tackle the above issues, we design a new BEV-enhanced VPR framework, namely BEV$^2$PR, generating a composite descriptor with both visual cues and spatial awareness based on a single camera. The key points lie in: 1) We use BEV features as an explicit source of structural knowledge in constructing global features. 2) The lower layers of the pre-trained backbone from BEV generation are shared for visual and structural streams in VPR, facilitating the learning of fine-grained local features in the visual stream. 3) The complementary visual and structural features can jointly enhance VPR performance. Our BEV$^2$PR framework enables consistent performance improvements over several popular aggregation modules for RGB global features. The experiments on our collected VPR-NuScenes dataset demonstrate an absolute gain of 2.47% on Recall@1 for the strong Conv-AP baseline to achieve the best performance in our setting, and notably, a 18.06% gain on the hard set. The code and dataset will be available at this https URL.
Submission history
From: Fudong Ge [view email][v1] Mon, 11 Mar 2024 10:46:43 UTC (3,485 KB)
[v2] Tue, 23 Jul 2024 12:20:27 UTC (4,011 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.