Computer Science > Human-Computer Interaction
[Submitted on 8 Mar 2024]
Title:Trust Recognition in Human-Robot Cooperation Using EEG
View PDF HTML (experimental)Abstract:Collaboration between humans and robots is becoming increasingly crucial in our daily life. In order to accomplish efficient cooperation, trust recognition is vital, empowering robots to predict human behaviors and make trust-aware decisions. Consequently, there is an urgent need for a generalized approach to recognize human-robot trust. This study addresses this need by introducing an EEG-based method for trust recognition during human-robot cooperation. A human-robot cooperation game scenario is used to stimulate various human trust levels when working with robots. To enhance recognition performance, the study proposes an EEG Vision Transformer model coupled with a 3-D spatial representation to capture the spatial information of EEG, taking into account the topological relationship among electrodes. To validate this approach, a public EEG-based human trust dataset called EEGTrust is constructed. Experimental results indicate the effectiveness of the proposed approach, achieving an accuracy of 74.99% in slice-wise cross-validation and 62.00% in trial-wise cross-validation. This outperforms baseline models in both recognition accuracy and generalization. Furthermore, an ablation study demonstrates a significant improvement in trust recognition performance of the spatial representation. The source code and EEGTrust dataset are available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.