Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Mar 2024]
Title:SAM-PD: How Far Can SAM Take Us in Tracking and Segmenting Anything in Videos by Prompt Denoising
View PDF HTML (experimental)Abstract:Recently, promptable segmentation models, such as the Segment Anything Model (SAM), have demonstrated robust zero-shot generalization capabilities on static images. These promptable models exhibit denoising abilities for imprecise prompt inputs, such as imprecise bounding boxes. In this paper, we explore the potential of applying SAM to track and segment objects in videos where we recognize the tracking task as a prompt denoising task. Specifically, we iteratively propagate the bounding box of each object's mask in the preceding frame as the prompt for the next frame. Furthermore, to enhance SAM's denoising capability against position and size variations, we propose a multi-prompt strategy where we provide multiple jittered and scaled box prompts for each object and preserve the mask prediction with the highest semantic similarity to the template mask. We also introduce a point-based refinement stage to handle occlusions and reduce cumulative errors. Without involving tracking modules, our approach demonstrates comparable performance in video object/instance segmentation tasks on three datasets: DAVIS2017, YouTubeVOS2018, and UVO, serving as a concise baseline and endowing SAM-based downstream applications with tracking capabilities.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.