Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Mar 2024 (v1), last revised 2 Jun 2024 (this version, v2)]
Title:Slot Abstractors: Toward Scalable Abstract Visual Reasoning
View PDF HTML (experimental)Abstract:Abstract visual reasoning is a characteristically human ability, allowing the identification of relational patterns that are abstracted away from object features, and the systematic generalization of those patterns to unseen problems. Recent work has demonstrated strong systematic generalization in visual reasoning tasks involving multi-object inputs, through the integration of slot-based methods used for extracting object-centric representations coupled with strong inductive biases for relational abstraction. However, this approach was limited to problems containing a single rule, and was not scalable to visual reasoning problems containing a large number of objects. Other recent work proposed Abstractors, an extension of Transformers that incorporates strong relational inductive biases, thereby inheriting the Transformer's scalability and multi-head architecture, but it has yet to be demonstrated how this approach might be applied to multi-object visual inputs. Here we combine the strengths of the above approaches and propose Slot Abstractors, an approach to abstract visual reasoning that can be scaled to problems involving a large number of objects and multiple relations among them. The approach displays state-of-the-art performance across four abstract visual reasoning tasks, as well as an abstract reasoning task involving real-world images.
Submission history
From: Shanka Subhra Mondal [view email][v1] Wed, 6 Mar 2024 04:49:02 UTC (695 KB)
[v2] Sun, 2 Jun 2024 23:04:43 UTC (1,477 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.