Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 5 Mar 2024]
Title:Speckle Noise Reduction in Ultrasound Images using Denoising Auto-encoder with Skip Connection
View PDF HTML (experimental)Abstract:Ultrasound is a widely used medical tool for non-invasive diagnosis, but its images often contain speckle noise which can lower their resolution and contrast-to-noise ratio. This can make it more difficult to extract, recognize, and analyze features in the images, as well as impair the accuracy of computer-assisted diagnostic techniques and the ability of doctors to interpret the images. Reducing speckle noise, therefore, is a crucial step in the preprocessing of ultrasound images. Researchers have proposed several speckle reduction methods, but no single method takes all relevant factors into account. In this paper, we compare seven such methods: Median, Gaussian, Bilateral, Average, Weiner, Anisotropic and Denoising auto-encoder without and with skip connections in terms of their ability to preserve features and edges while effectively reducing noise. In an experimental study, a convolutional noise-removing auto-encoder with skip connection, a deep learning method, was used to improve ultrasound images of breast cancer. This method involved adding speckle noise at various levels. The results of the deep learning method were compared to those of traditional image enhancement methods, and it was found that the proposed method was more effective. To assess the performance of these algorithms, we use three established evaluation metrics and present both filtered images and statistical data.
Current browse context:
eess.IV
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.