Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Mar 2024 (v1), last revised 24 Jun 2024 (this version, v2)]
Title:MovieLLM: Enhancing Long Video Understanding with AI-Generated Movies
View PDF HTML (experimental)Abstract:Development of multimodal models has marked a significant step forward in how machines understand videos. These models have shown promise in analyzing short video clips. However, when it comes to longer formats like movies, they often fall short. The main hurdles are the lack of high-quality, diverse video data and the intensive work required to collect or annotate such data. In face of these challenges, we propose MovieLLM, a novel framework designed to synthesize consistent and high-quality video data for instruction tuning. The pipeline is carefully designed to control the style of videos by improving textual inversion technique with powerful text generation capability of GPT-4. As the first framework to do such thing, our approach stands out for its flexibility and scalability, empowering users to create customized movies with only one description. This makes it a superior alternative to traditional data collection methods. Our extensive experiments validate that the data produced by MovieLLM significantly improves the performance of multimodal models in understanding complex video narratives, overcoming the limitations of existing datasets regarding scarcity and bias.
Submission history
From: Jiamu Sheng [view email][v1] Sun, 3 Mar 2024 07:43:39 UTC (9,952 KB)
[v2] Mon, 24 Jun 2024 04:55:28 UTC (21,568 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.