Computer Science > Machine Learning
[Submitted on 3 Mar 2024 (v1), last revised 19 Nov 2024 (this version, v3)]
Title:The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing
View PDF HTML (experimental)Abstract:Models are expected to engage in invariance learning, which involves distinguishing the core relations that remain consistent across varying environments to ensure the predictions are safe, robust and fair. While existing works consider specific algorithms to realize invariance learning, we show that model has the potential to learn invariance through standard training procedures. In other words, this paper studies the implicit bias of Stochastic Gradient Descent (SGD) over heterogeneous data and shows that the implicit bias drives the model learning towards an invariant solution. We call the phenomenon the implicit invariance learning. Specifically, we theoretically investigate the multi-environment low-rank matrix sensing problem where in each environment, the signal comprises (i) a lower-rank invariant part shared across all environments; and (ii) a significantly varying environment-dependent spurious component. The key insight is, through simply employing the large step size large-batch SGD sequentially in each environment without any explicit regularization, the oscillation caused by heterogeneity can provably prevent model learning spurious signals. The model reaches the invariant solution after certain iterations. In contrast, model learned using pooled SGD over all data would simultaneously learn both the invariant and spurious signals. Overall, we unveil another implicit bias that is a result of the symbiosis between the heterogeneity of data and modern algorithms, which is, to the best of our knowledge, first in the literature.
Submission history
From: Yang Xu [view email][v1] Sun, 3 Mar 2024 07:38:24 UTC (105 KB)
[v2] Sat, 16 Nov 2024 04:49:06 UTC (226 KB)
[v3] Tue, 19 Nov 2024 06:10:32 UTC (226 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.