Computer Science > Machine Learning
[Submitted on 1 Mar 2024]
Title:Machine Learning Training Optimization using the Barycentric Correction Procedure
View PDFAbstract:Machine learning (ML) algorithms are predictively competitive algorithms with many human-impact applications. However, the issue of long execution time remains unsolved in the literature for high-dimensional spaces. This study proposes combining ML algorithms with an efficient methodology known as the barycentric correction procedure (BCP) to address this issue. This study uses synthetic data and an educational dataset from a private university to show the benefits of the proposed method. It was found that this combination provides significant benefits related to time in synthetic and real data without losing accuracy when the number of instances and dimensions increases. Additionally, for high-dimensional spaces, it was proved that BCP and linear support vector classification (LinearSVC), after an estimated feature map for the gaussian radial basis function (RBF) kernel, were unfeasible in terms of computational time and accuracy.
Submission history
From: SofĂa Ramos-Pulido [view email][v1] Fri, 1 Mar 2024 13:56:36 UTC (1,205 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.