Computer Science > Computation and Language
[Submitted on 21 Feb 2024 (v1), last revised 15 Oct 2024 (this version, v3)]
Title:Ouroboros: Generating Longer Drafts Phrase by Phrase for Faster Speculative Decoding
View PDFAbstract:Speculative decoding is a widely used method that accelerates the generation process of large language models (LLMs) with no compromise in model performance. It achieves this goal by using an existing smaller model for drafting and then employing the target LLM to verify the draft in a low-cost parallel manner. Under such a drafting-verification framework, drafting efficiency has become a bottleneck in the final speedup of speculative decoding. Therefore, generating longer drafts at less cost can lead to better decoding speedup. To achieve this, we introduce Ouroboros, which can generate draft phrases to parallelize the drafting process and meanwhile lengthen drafts in a training-free manner. The experimental results on various typical text generation tasks show that Ouroboros can achieve speedups of up to $2.8\times$ over speculative decoding and $3.9\times$ over vanilla decoding, without fine-tuning draft and target models. The source code of Ouroboros is available at this https URL.
Submission history
From: Weilin Zhao [view email][v1] Wed, 21 Feb 2024 11:31:28 UTC (1,539 KB)
[v2] Wed, 26 Jun 2024 04:52:02 UTC (8,914 KB)
[v3] Tue, 15 Oct 2024 07:43:51 UTC (8,917 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.