Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Feb 2024]
Title:Multi-scale Spatio-temporal Transformer-based Imbalanced Longitudinal Learning for Glaucoma Forecasting from Irregular Time Series Images
View PDF HTML (experimental)Abstract:Glaucoma is one of the major eye diseases that leads to progressive optic nerve fiber damage and irreversible blindness, afflicting millions of individuals. Glaucoma forecast is a good solution to early screening and intervention of potential patients, which is helpful to prevent further deterioration of the disease. It leverages a series of historical fundus images of an eye and forecasts the likelihood of glaucoma occurrence in the future. However, the irregular sampling nature and the imbalanced class distribution are two challenges in the development of disease forecasting approaches. To this end, we introduce the Multi-scale Spatio-temporal Transformer Network (MST-former) based on the transformer architecture tailored for sequential image inputs, which can effectively learn representative semantic information from sequential images on both temporal and spatial dimensions. Specifically, we employ a multi-scale structure to extract features at various resolutions, which can largely exploit rich spatial information encoded in each image. Besides, we design a time distance matrix to scale time attention in a non-linear manner, which could effectively deal with the irregularly sampled data. Furthermore, we introduce a temperature-controlled Balanced Softmax Cross-entropy loss to address the class imbalance issue. Extensive experiments on the Sequential fundus Images for Glaucoma Forecast (SIGF) dataset demonstrate the superiority of the proposed MST-former method, achieving an AUC of 98.6% for glaucoma forecasting. Besides, our method shows excellent generalization capability on the Alzheimer's Disease Neuroimaging Initiative (ADNI) MRI dataset, with an accuracy of 90.3% for mild cognitive impairment and Alzheimer's disease prediction, outperforming the compared method by a large margin.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.