Mathematics > Numerical Analysis
[Submitted on 16 Feb 2024]
Title:Hermite Neural Network Simulation for Solving the 2D Schrodinger Equation
View PDFAbstract:The Schrodinger equation is a mathematical equation describing the wave function's behavior in a quantum-mechanical system. It is a partial differential equation that provides valuable insights into the fundamental principles of quantum mechanics. In this paper, the aim was to solve the Schrodinger equation with sufficient accuracy by using a mixture of neural networks with the collocation method base Hermite functions. Initially, the Hermite functions roots were employed as collocation points, enhancing the efficiency of the solution. The Schrodinger equation is defined in an infinite domain, the use of Hermite functions as activation functions resulted in excellent precision. Finally, the proposed method was simulated using MATLAB's Simulink tool. The results were then compared with those obtained using Physics-informed neural networks and the presented method.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.