Electrical Engineering and Systems Science > Systems and Control
[Submitted on 16 Feb 2024]
Title:Quantifying and combining uncertainty for improving the behavior of Digital Twin Systems
View PDFAbstract:Uncertainty is an inherent property of any complex system, especially those that integrate physical parts or operate in real environments. In this paper, we focus on the Digital Twins of adaptive systems, which are particularly complex to design, verify, and optimize. One of the problems of having two systems (the physical one and its digital replica) is that their behavior may not always be consistent. In addition, both twins are normally subject to different types of uncertainties, which complicates their comparison. In this paper we propose the explicit representation and treatment of the uncertainty of both twins, and show how this enables a more accurate comparison of their behaviors. Furthermore, this allows us to reduce the overall system uncertainty and improve its behavior by properly averaging the individual uncertainties of the two twins. An exemplary incubator system is used to illustrate and validate our proposal.
Submission history
From: Antonio Vallecillo Vallecillo [view email][v1] Fri, 16 Feb 2024 09:46:40 UTC (2,731 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.