Computer Science > Machine Learning
[Submitted on 11 Feb 2024]
Title:An attempt to generate new bridge types from latent space of denoising diffusion Implicit model
View PDFAbstract:Use denoising diffusion implicit model for bridge-type innovation. The process of adding noise and denoising to an image can be likened to the process of a corpse rotting and a detective restoring the scene of a victim being killed, to help beginners understand. Through an easy-to-understand algebraic method, derive the function formulas for adding noise and denoising, making it easier for beginners to master the mathematical principles of the model. Using symmetric structured image dataset of three-span beam bridge, arch bridge, cable-stayed bridge and suspension bridge , based on Python programming language, TensorFlow and Keras deep learning platform framework , denoising diffusion implicit model is constructed and trained. From the latent space sampling, new bridge types with asymmetric structures can be generated. Denoising diffusion implicit model can organically combine different structural components on the basis of human original bridge types, and create new bridge types.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.