Computer Science > Symbolic Computation
[Submitted on 12 Feb 2024]
Title:Solving parameter-dependent semi-algebraic systems
View PDFAbstract:We consider systems of polynomial equations and inequalities in $\mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]$ where $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots,y_t)$. The $\boldsymbol{y}$ indeterminates are considered as parameters and we assume that when specialising them generically, the set of common complex solutions, to the obtained equations, is finite. We consider the problem of real root classification for such parameter-dependent problems, i.e. identifying the possible number of real solutions depending on the values of the parameters and computing a description of the regions of the space of parameters over which the number of real roots remains invariant.
We design an algorithm for solving this problem. The formulas it outputs enjoy a determinantal structure. Under genericity assumptions, we show that its arithmetic complexity is polynomial in both the maximum degree $d$ and the number $s$ of the input inequalities and exponential in $nt+t^2$. The output formulas consist of polynomials of degree bounded by $(2s+n)d^{n+1}$. This is the first algorithm with such a singly exponential complexity. We report on practical experiments showing that a first implementation of this algorithm can tackle examples which were previously out of reach.
Current browse context:
cs.SC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.