Computer Science > Artificial Intelligence
[Submitted on 7 Feb 2024]
Title:Three Pathways to Neurosymbolic Reinforcement Learning with Interpretable Model and Policy Networks
View PDF HTML (experimental)Abstract:Neurosymbolic AI combines the interpretability, parsimony, and explicit reasoning of classical symbolic approaches with the statistical learning of data-driven neural approaches. Models and policies that are simultaneously differentiable and interpretable may be key enablers of this marriage. This paper demonstrates three pathways to implementing such models and policies in a real-world reinforcement learning setting. Specifically, we study a broad class of neural networks that build interpretable semantics directly into their architecture. We reveal and highlight both the potential and the essential difficulties of combining logic, simulation, and learning. One lesson is that learning benefits from continuity and differentiability, but classical logic is discrete and non-differentiable. The relaxation to real-valued, differentiable representations presents a trade-off; the more learnable, the less interpretable. Another lesson is that using logic in the context of a numerical simulation involves a non-trivial mapping from raw (e.g., real-valued time series) simulation data to logical predicates. Some open questions this note exposes include: What are the limits of rule-based controllers, and how learnable are they? Do the differentiable interpretable approaches discussed here scale to large, complex, uncertain systems? Can we truly achieve interpretability? We highlight these and other themes across the three approaches.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.