Computer Science > Machine Learning
[Submitted on 6 Feb 2024 (v1), last revised 26 Jun 2024 (this version, v3)]
Title:SUB-PLAY: Adversarial Policies against Partially Observed Multi-Agent Reinforcement Learning Systems
View PDF HTML (experimental)Abstract:Recent advancements in multi-agent reinforcement learning (MARL) have opened up vast application prospects, such as swarm control of drones, collaborative manipulation by robotic arms, and multi-target encirclement. However, potential security threats during the MARL deployment need more attention and thorough investigation. Recent research reveals that attackers can rapidly exploit the victim's vulnerabilities, generating adversarial policies that result in the failure of specific tasks. For instance, reducing the winning rate of a superhuman-level Go AI to around 20%. Existing studies predominantly focus on two-player competitive environments, assuming attackers possess complete global state observation.
In this study, we unveil, for the first time, the capability of attackers to generate adversarial policies even when restricted to partial observations of the victims in multi-agent competitive environments. Specifically, we propose a novel black-box attack (SUB-PLAY) that incorporates the concept of constructing multiple subgames to mitigate the impact of partial observability and suggests sharing transitions among subpolicies to improve attackers' exploitative ability. Extensive evaluations demonstrate the effectiveness of SUB-PLAY under three typical partial observability limitations. Visualization results indicate that adversarial policies induce significantly different activations of the victims' policy networks. Furthermore, we evaluate three potential defenses aimed at exploring ways to mitigate security threats posed by adversarial policies, providing constructive recommendations for deploying MARL in competitive environments.
Submission history
From: Oubo Ma [view email][v1] Tue, 6 Feb 2024 06:18:16 UTC (2,155 KB)
[v2] Sun, 16 Jun 2024 09:27:17 UTC (2,116 KB)
[v3] Wed, 26 Jun 2024 12:41:59 UTC (2,140 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.