Computer Science > Logic in Computer Science
[Submitted on 5 Feb 2024 (v1), last revised 20 Oct 2024 (this version, v3)]
Title:Polynomial Lawvere Logic
View PDFAbstract:We study Polynomial Lawvere logic PL, a logic defined over the Lawvere quantale of extended positive reals with sum as tensor, to which we add multiplication, thereby obtaining a semiring structure. PL is designed for complex quantitative reasoning, allowing judgements that express inequalities between polynomials on the extended positive reals. We introduce a deduction system and demonstrate its expressiveness by deriving a classical result from probability theory relating the Kantorovich and the total variation distances. Although the deductive system is not complete in general, we achieve completeness for finitely axiomatizable theories. The proof of completeness relies on the Krivine-Stengle Positivstellensatz (a variant of Hilbert's Nullstellensatz). Additionally, we provide new complexity results, both for PL and its affine fragment AL, regarding two decision problems: satisfiability of a set of judgements and semantical consequence from a set of judgements. The former is NP-complete in AL and in PSPACE for PL; the latter is co-NP complete in PL and in PSPACE for PL.
Submission history
From: Radu Mardare [view email][v1] Mon, 5 Feb 2024 22:00:31 UTC (27 KB)
[v2] Wed, 7 Feb 2024 08:52:21 UTC (27 KB)
[v3] Sun, 20 Oct 2024 06:45:00 UTC (53 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.