Statistics > Machine Learning
[Submitted on 5 Feb 2024 (v1), last revised 6 Feb 2024 (this version, v2)]
Title:Bayes-Optimal Fair Classification with Linear Disparity Constraints via Pre-, In-, and Post-processing
View PDFAbstract:Machine learning algorithms may have disparate impacts on protected groups. To address this, we develop methods for Bayes-optimal fair classification, aiming to minimize classification error subject to given group fairness constraints. We introduce the notion of \emph{linear disparity measures}, which are linear functions of a probabilistic classifier; and \emph{bilinear disparity measures}, which are also linear in the group-wise regression functions. We show that several popular disparity measures -- the deviations from demographic parity, equality of opportunity, and predictive equality -- are bilinear.
We find the form of Bayes-optimal fair classifiers under a single linear disparity measure, by uncovering a connection with the Neyman-Pearson lemma. For bilinear disparity measures, Bayes-optimal fair classifiers become group-wise thresholding rules. Our approach can also handle multiple fairness constraints (such as equalized odds), and the common scenario when the protected attribute cannot be used at the prediction phase.
Leveraging our theoretical results, we design methods that learn fair Bayes-optimal classifiers under bilinear disparity constraints. Our methods cover three popular approaches to fairness-aware classification, via pre-processing (Fair Up- and Down-Sampling), in-processing (Fair Cost-Sensitive Classification) and post-processing (a Fair Plug-In Rule). Our methods control disparity directly while achieving near-optimal fairness-accuracy tradeoffs. We show empirically that our methods compare favorably to existing algorithms.
Submission history
From: Xianli Zeng [view email][v1] Mon, 5 Feb 2024 08:59:47 UTC (825 KB)
[v2] Tue, 6 Feb 2024 07:02:16 UTC (825 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.