Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Feb 2024 (v1), last revised 19 May 2024 (this version, v3)]
Title:ID-NeRF: Indirect Diffusion-guided Neural Radiance Fields for Generalizable View Synthesis
View PDF HTML (experimental)Abstract:Implicit neural representations, represented by Neural Radiance Fields (NeRF), have dominated research in 3D computer vision by virtue of high-quality visual results and data-driven benefits. However, their realistic applications are hindered by the need for dense inputs and per-scene optimization. To solve this problem, previous methods implement generalizable NeRFs by extracting local features from sparse inputs as conditions for the NeRF decoder. However, although this way can allow feed-forward reconstruction, they suffer from the inherent drawback of yielding sub-optimal results caused by erroneous reprojected features. In this paper, we focus on this problem and aim to address it by introducing pre-trained generative priors to enable high-quality generalizable novel view synthesis. Specifically, we propose a novel Indirect Diffusion-guided NeRF framework, termed ID-NeRF, which leverages pre-trained diffusion priors as a guide for the reprojected features created by the previous paradigm. Notably, to enable 3D-consistent predictions, the proposed ID-NeRF discards the way of direct supervision commonly used in prior 3D generative models and instead adopts a novel indirect prior injection strategy. This strategy is implemented by distilling pre-trained knowledge into an imaginative latent space via score-based distillation, and an attention-based refinement module is then proposed to leverage the embedded priors to improve reprojected features extracted from sparse inputs. We conduct extensive experiments on multiple datasets to evaluate our method, and the results demonstrate the effectiveness of our method in synthesizing novel views in a generalizable manner, especially in sparse settings.
Submission history
From: Yaokun Li [view email][v1] Fri, 2 Feb 2024 08:39:51 UTC (8,924 KB)
[v2] Tue, 6 Feb 2024 06:30:40 UTC (6,263 KB)
[v3] Sun, 19 May 2024 01:35:41 UTC (91,347 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.