Computer Science > Emerging Technologies
[Submitted on 3 Feb 2024]
Title:Low-power scalable multilayer optoelectronic neural networks enabled with incoherent light
View PDF HTML (experimental)Abstract:Optical approaches have made great strides towards the goal of high-speed, energy-efficient computing necessary for modern deep learning and AI applications. Read-in and read-out of data, however, limit the overall performance of existing approaches. This study introduces a multilayer optoelectronic computing framework that alternates between optical and optoelectronic layers to implement matrix-vector multiplications and rectified linear functions, respectively. Our framework is designed for real-time, parallelized operations, leveraging 2D arrays of LEDs and photodetectors connected via independent analog electronics. We experimentally demonstrate this approach using a system with a three-layer network with two hidden layers and operate it to recognize images from the MNIST database with a recognition accuracy of 92% and classify classes from a nonlinear spiral data with 86% accuracy. By implementing multiple layers of a deep neural network simultaneously, our approach significantly reduces the number of read-ins and read-outs required and paves the way for scalable optical accelerators requiring ultra low energy.
Current browse context:
cs.ET
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.