Computer Science > Computers and Society
[Submitted on 16 Jan 2024]
Title:Improved Performances and Motivation in Intelligent Tutoring Systems: Combining Machine Learning and Learner Choice
View PDF HTML (experimental)Abstract:Large class sizes pose challenges to personalized learning in schools, which educational technologies, especially intelligent tutoring systems (ITS), aim to address. In this context, the ZPDES algorithm, based on the Learning Progress Hypothesis (LPH) and multi-armed bandit machine learning techniques, sequences exercises that maximize learning progress (LP). This algorithm was previously shown in field studies to boost learning performances for a wider diversity of students compared to a hand-designed curriculum. However, its motivational impact was not assessed. Also, ZPDES did not allow students to express choices. This limitation in agency is at odds with the LPH theory concerned with modeling curiosity-driven learning. We here study how the introduction of such choice possibilities impact both learning efficiency and motivation. The given choice concerns dimensions that are orthogonal to exercise difficulty, acting as a playful feature.
In an extensive field study (265 7-8 years old children, RCT design), we compare systems based either on ZPDES or a hand-designed curriculum, both with and without self-choice. We first show that ZPDES improves learning performance and produces a positive and motivating learning experience. We then show that the addition of choice triggers intrinsic motivation and reinforces the learning effectiveness of the LP-based personalization. In doing so, it strengthens the links between intrinsic motivation and performance progress during the serious game. Conversely, deleterious effects of the playful feature are observed for hand-designed linear paths. Thus, the intrinsic motivation elicited by a playful feature is beneficial only if the curriculum personalization is effective for the learner. Such a result deserves great attention due to increased use of playful features in non adaptive educational technologies.
Submission history
From: Benjamin Clément [view email][v1] Tue, 16 Jan 2024 13:41:00 UTC (7,819 KB)
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.