Computer Science > Social and Information Networks
[Submitted on 1 Feb 2024 (v1), last revised 8 Apr 2024 (this version, v2)]
Title:Causal evidence for social group sizes from Wikipedia editing data
View PDF HTML (experimental)Abstract:Human communities have self-organizing properties in which specific Dunbar Numbers may be invoked to explain group attachments. By analyzing Wikipedia editing histories across a wide range of subject pages, we show that there is an emergent coherence in the size of transient groups formed to edit the content of subject texts, with two peaks averaging at around $N=8$ for the size corresponding to maximal contention, and at around $N=4$ as a regular team. These values are consistent with the observed sizes of conversational groups, as well as the hierarchical structuring of Dunbar graphs. We use the Promise Theory model of bipartite trust to derive a scaling law that fits the data and may apply to all group size distributions, when based on attraction to a seeded group process. In addition to providing further evidence that even spontaneous communities of strangers are self-organizing, the results have important implications for the governance of the Wikipedia commons and for the security of all online social platforms and associations.
Submission history
From: Mark Burgess [view email][v1] Thu, 1 Feb 2024 13:45:12 UTC (111 KB)
[v2] Mon, 8 Apr 2024 14:09:30 UTC (116 KB)
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.