Computer Science > Software Engineering
[Submitted on 31 Jan 2024]
Title:Evaluating the Effectiveness of GPT-4 Turbo in Creating Defeaters for Assurance Cases
View PDFAbstract:Assurance cases (ACs) are structured arguments that support the verification of the correct implementation of systems' non-functional requirements, such as safety and security, thereby preventing system failures which could lead to catastrophic outcomes, including loss of lives. ACs facilitate the certification of systems in accordance with industrial standards, for example, DO-178C and ISO 26262. Identifying defeaters arguments that refute these ACs is essential for improving the robustness and confidence in ACs. To automate this task, we introduce a novel method that leverages the capabilities of GPT-4 Turbo, an advanced Large Language Model (LLM) developed by OpenAI, to identify defeaters within ACs formalized using the Eliminative Argumentation (EA) notation. Our initial evaluation gauges the model's proficiency in understanding and generating arguments within this framework. The findings indicate that GPT-4 Turbo excels in EA notation and is capable of generating various types of defeaters.
Submission history
From: Kimya Khakzad Shahandashti [view email][v1] Wed, 31 Jan 2024 16:51:23 UTC (262 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.