Computer Science > Information Theory
[Submitted on 29 Jan 2024]
Title:RL-Based Hyperparameter Selection for Spectrum Sensing With CNNs
View PDF HTML (experimental)Abstract:Selection of hyperparameters in deep neural networks is a challenging problem due to the wide search space and emergence of various layers with specific hyperparameters. There exists an absence of consideration for the neural architecture selection of convolutional neural networks (CNNs) for spectrum sensing. Here, we develop a method using reinforcement learning and Q-learning to systematically search and evaluate various architectures for generated datasets including different signals and channels in the spectrum sensing problem. We show by extensive simulations that CNN-based detectors proposed by our developed method outperform several detectors in the literature. For the most complex dataset, the proposed approach provides 9% enhancement in accuracy at the cost of higher computational complexity. Furthermore, a novel method using multi-armed bandit model for selection of the sensing time is proposed to achieve higher throughput and accuracy while minimizing the consumed energy. The method dynamically adjusts the sensing time under the time-varying condition of the channel without prior information. We demonstrate through a simulated scenario that the proposed method improves the achieved reward by about 20% compared to the conventional policies. Consequently, this study effectively manages the selection of important hyperparameters for CNN-based detectors offering superior performance of cognitive radio network.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.