Computer Science > Machine Learning
[Submitted on 29 Jan 2024 (v1), last revised 27 May 2024 (this version, v3)]
Title:Context-Former: Stitching via Latent Conditioned Sequence Modeling
View PDF HTML (experimental)Abstract:Offline reinforcement learning (RL) algorithms can learn better decision-making compared to behavior policies by stitching the suboptimal trajectories to derive more optimal ones. Meanwhile, Decision Transformer (DT) abstracts the RL as sequence modeling, showcasing competitive performance on offline RL benchmarks. However, recent studies demonstrate that DT lacks of stitching capacity, thus exploiting stitching capability for DT is vital to further improve its performance. In order to endow stitching capability to DT, we abstract trajectory stitching as expert matching and introduce our approach, ContextFormer, which integrates contextual information-based imitation learning (IL) and sequence modeling to stitch sub-optimal trajectory fragments by emulating the representations of a limited number of expert trajectories. To validate our approach, we conduct experiments from two perspectives: 1) We conduct extensive experiments on D4RL benchmarks under the settings of IL, and experimental results demonstrate ContextFormer can achieve competitive performance in multiple IL settings. 2) More importantly, we conduct a comparison of ContextFormer with various competitive DT variants using identical training datasets. The experimental results unveiled ContextFormer's superiority, as it outperformed all other variants, showcasing its remarkable performance.
Submission history
From: Ziqi Zhang [view email][v1] Mon, 29 Jan 2024 06:05:14 UTC (778 KB)
[v2] Sat, 3 Feb 2024 04:45:58 UTC (906 KB)
[v3] Mon, 27 May 2024 08:38:18 UTC (23,608 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.