Computer Science > Machine Learning
[Submitted on 28 Jan 2024 (v1), last revised 5 Apr 2024 (this version, v2)]
Title:Hyperedge Interaction-aware Hypergraph Neural Network
View PDFAbstract:Hypergraphs provide an effective modeling approach for modeling high-order relationships in many real-world datasets. To capture such complex relationships, several hypergraph neural networks have been proposed for learning hypergraph structure, which propagate information from nodes to hyperedges and then from hyperedges back to nodes. However, most existing methods focus on information propagation between hyperedges and nodes, neglecting the interactions among hyperedges themselves. In this paper, we propose HeIHNN, a hyperedge interaction-aware hypergraph neural network, which captures the interactions among hyperedges during the convolution process and introduce a novel mechanism to enhance information flow between hyperedges and nodes. Specifically, HeIHNN integrates the interactions between hyperedges into the hypergraph convolution by constructing a three-stage information propagation process. After propagating information from nodes to hyperedges, we introduce a hyperedge-level convolution to update the hyperedge embeddings. Finally, the embeddings that capture rich information from the interaction among hyperedges will be utilized to update the node embeddings. Additionally, we introduce a hyperedge outlier removal mechanism in the information propagation stages between nodes and hyperedges, which dynamically adjusts the hypergraph structure using the learned embeddings, effectively removing outliers. Extensive experiments conducted on real-world datasets show the competitive performance of HeIHNN compared with state-of-the-art methods.
Submission history
From: RongPing Ye [view email][v1] Sun, 28 Jan 2024 07:05:30 UTC (497 KB)
[v2] Fri, 5 Apr 2024 10:32:57 UTC (677 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.