Electrical Engineering and Systems Science > Signal Processing
[Submitted on 14 Jan 2024]
Title:Window Stacking Meta-Models for Clinical EEG Classification
View PDF HTML (experimental)Abstract:Windowing is a common technique in EEG machine learning classification and other time series tasks. However, a challenge arises when employing this technique: computational expense inhibits learning global relationships across an entire recording or set of recordings. Furthermore, the labels inherited by windows from their parent recordings may not accurately reflect the content of that window in isolation. To resolve these issues, we introduce a multi-stage model architecture, incorporating meta-learning principles tailored to time-windowed data aggregation. We further tested two distinct strategies to alleviate these issues: lengthening the window and utilizing overlapping to augment data. Our methods, when tested on the Temple University Hospital Abnormal EEG Corpus (TUAB), dramatically boosted the benchmark accuracy from 89.8 percent to 99.0 percent. This breakthrough performance surpasses prior performance projections for this dataset and paves the way for clinical applications of machine learning solutions to EEG interpretation challenges. On a broader and more varied dataset from the Temple University Hospital EEG Corpus (TUEG), we attained an accuracy of 86.7%, nearing the assumed performance ceiling set by variable inter-rater agreement on such datasets.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.