Computer Science > Machine Learning
[Submitted on 18 Jan 2024 (v1), last revised 7 Jul 2024 (this version, v4)]
Title:Spatial-Temporal Large Language Model for Traffic Prediction
View PDF HTML (experimental)Abstract:Traffic prediction, an essential component for intelligent transportation systems, endeavours to use historical data to foresee future traffic features at specific locations. Although existing traffic prediction models often emphasize developing complex neural network structures, their accuracy has not improved. Recently, large language models have shown outstanding capabilities in time series analysis. Differing from existing models, LLMs progress mainly through parameter expansion and extensive pretraining while maintaining their fundamental structures. Motivated by these developments, we propose a Spatial-Temporal Large Language Model (ST-LLM) for traffic prediction. In the ST-LLM, we define timesteps at each location as tokens and design a spatial-temporal embedding to learn the spatial location and global temporal patterns of these tokens. Additionally, we integrate these embeddings by a fusion convolution to each token for a unified spatial-temporal representation. Furthermore, we innovate a partially frozen attention strategy to adapt the LLM to capture global spatial-temporal dependencies for traffic prediction. Comprehensive experiments on real traffic datasets offer evidence that ST-LLM is a powerful spatial-temporal learner that outperforms state-of-the-art models. Notably, the ST-LLM also exhibits robust performance in both few-shot and zero-shot prediction scenarios. The code is publicly available at this https URL.
Submission history
From: Chenxi Liu [view email][v1] Thu, 18 Jan 2024 17:03:59 UTC (280 KB)
[v2] Tue, 23 Jan 2024 07:42:40 UTC (273 KB)
[v3] Tue, 18 Jun 2024 07:50:31 UTC (2,067 KB)
[v4] Sun, 7 Jul 2024 23:57:29 UTC (2,068 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.