Computer Science > Hardware Architecture
[Submitted on 18 Jan 2024]
Title:BlockAMC: Scalable In-Memory Analog Matrix Computing for Solving Linear Systems
View PDFAbstract:Recently, in-memory analog matrix computing (AMC) with nonvolatile resistive memory has been developed for solving matrix problems in one step, e.g., matrix inversion of solving linear systems. However, the analog nature sets up a barrier to the scalability of AMC, due to the limits on the manufacturability and yield of resistive memory arrays, non-idealities of device and circuit, and cost of hardware implementations. Aiming to deliver a scalable AMC approach for solving linear systems, this work presents BlockAMC, which partitions a large original matrix into smaller ones on different memory arrays. A macro is designed to perform matrix inversion and matrix-vector multiplication with the block matrices, obtaining the partial solutions to recover the original solution. The size of block matrices can be exponentially reduced by performing multiple stages of divide-and-conquer, resulting in a two-stage solver design that enhances the scalability of this approach. BlockAMC is also advantageous in alleviating the accuracy issue of AMC, especially in the presence of device and circuit non-idealities, such as conductance variations and interconnect resistances. Compared to a single AMC circuit solving the same problem, BlockAMC improves the area and energy efficiency by 48.83% and 40%, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.